skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wolfe, Jeremy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. Abstract In any visual search task in the lab or in the world, observers will make errors. Those errors can be categorized as “deterministic”: If you miss this target in this display once, you will definitely miss it again. Alternatively, errors can be “stochastic”, occurring randomly with some probability from trial to trial. Researchers and practitioners have sought to reduce errors in visual search, but different types of errors might require different techniques for mitigation. To empirically categorize errors in a simple search task, our observers searched for the letter “T” among “L” distractors, with each display presented twice. When the letters were clearly visible (white letters on a gray background), the errors were almost completely stochastic (Exp 1). An error made on the first appearance of a display did not predict that an error would be made on the second appearance. When the visibility of the letters was manipulated (letters of different gray levels on a noisy background), the errors became a mix of stochastic and deterministic. Unsurprisingly, lower contrast targets produced more deterministic errors. (Exp 2). Using the stimuli of Exp 2, we tested whether errors could be reduced using cues that guided attention around the display but knew nothing about the content of that display (Exp3a, b). This had no effect, but cueing all item locations did succeed in reducing deterministic errors (Exp3c). 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Abstract Hypothesis-driven research rests on clearly articulated scientific theories. The building blocks for communicating these theories are scientific terms. Obviously, communication – and thus, scientific progress – is hampered if the meaning of these terms varies idiosyncratically across (sub)fields and even across individual researchers within the same subfield. We have formed an international group of experts representing various theoretical stances with the goal to homogenize the use of the terms that are most relevant to fundamental research onvisual distractionin visual search. Our discussions revealed striking heterogeneity and we had to invest much time and effort to increase our mutual understanding of each other’s use of central terms, which turned out to be strongly related to our respective theoretical positions. We present the outcomes of these discussions in a glossary and provide some context in several essays. Specifically, we explicate how central terms are used in the distraction literature and consensually sharpen their definitions in order to enable communication across theoretical standpoints. Where applicable, we also explain how the respective constructs can be measured. We believe that this novel type of adversarial collaboration can serve as a model for other fields of psychological research that strive to build a solid groundwork for theorizing and communicating by establishing a common language. For the field of visual distraction, the present paper should facilitate communication across theoretical standpoints and may serve as an introduction and reference text for newcomers. 
    more » « less